
Practical tips for defending web
applications in the age of agile/DevOps

zane@signalsciences.com
@zanelackey

Who	you’ll	be	heckling	today

• Started out in offense
– Pentester / researcher at iSEC Partners / NCC Group

• Moved to defense
– First CISO at Etsy, built and lead the security group

• Now scaling defense for many orgs
– Co-founder / CSO at Signal Sciences, delivering a

product that defends web applications in the
DevOps/Cloud world

So	what	is	this	talk	about	anyway?

Lessons learned adapting AppSec/SDLC from a
Waterfall world to the DevOps/Cloud world

Spoiler: Security shifts from being a gatekeeper
to enabling teams to be secure by default

What has changed?

The new realities in a DevSecOps world:

1. Changes happen multiple orders of magnitude faster
than previously
– Deployments go from a few a year to a few a week, month, or even

day
– Many injection points for security drops to few injections point

2. Decentralized ownership of deployment:
• The long and perilous journey of Dev->QA->Security->Dev-

>Sysops->Production becomes just Dev->Production
• As Dev/DevOps teams own their own ability to build and

deploy production infrastructure/apps, conversations with
security become opt-in rather than mandated
– A large culture shift is necessary around this

» Spoken previously on this:
http://www.slideshare.net/zanelackey/building-a-modern-
security-engineering-organization

The new realities in a DevSecOps world:

– Security can no longer be “outsourced” to the
security team, but rather that the security team’s
mission changes to providing the resources for
teams to be security self-sufficient

– Security only becomes successful if it can bake in
to the Development/DevOps process

How do legacy AppSec approaches
fare in a DevSecOps world?

An	example	of	legacy	AppSec approaches	in	a	DevOps	world

Select components of common SDLCs:

– Developer Training
– Threat modeling
– Design Reviews
– Static Analysis
– Dynamic Scanning
– Pentesting
– Feedback

What pieces of the SDLC need to adapt the
most?

Which components we’ll discuss today:

– Developer Training
– Threat Modeling
– Design Reviews
– Static Analysis
– Dynamic Scanning
– Pentesting
– Security Visibility
– Feedback
– Continuous Feedback

• Note: Just because we’re not discussing several of these items in this
talk doesn’t mean you stop doing them!

Static	Analysis:	It’s	not	a	party	until	the	32847326th page	of	
the	report!	

Static Analysis (legacy):

– Traditionally done as heavyweight process:
• Run once a week/month resulting in a large output
• Extensive configuration/tuning period, typically lasting

months+
• Top down: search for everything, slowly refine to

eliminate false positives

– Both of these issues were acceptable-ish in a
Waterfall world where you had plenty of time in
each release cycle

How do we adapt this control?

Static Analysis (modern):

– Shift from from a top down model to a bottoms up
one:
• Identify specific classes of vulnerabilities you care about most, and

start with just those
• Focus on eliminating false positives and enabling velocity with the

goal of only producing real issues that can be directly consumed by a
developer themselves

• Once completed, add one or two more vulnerabilities classes
• Repeat

– This enables the velocity needed in DevOps of being able to
run static analysis on every code commit

Static Analysis (modern):

– Example: Rather than trying to start with static analysis for
XSS, SQLi, Directory Traversal, Command Execution, etc
all at once, pick one:
• Pro tip: Pick the easiest to implement first, (ex: Command Execution)

– Grep’ing for system() has a pretty low false positive rate…

– The focus is not only on findings, but demonstrating to the
development org that this approach to static analysis can
bring them both value and velocity

Static Analysis (modern):

– Identify use of certain primitives that should initiate a
conversation with the security team rather than just be
blocked:
• Ex: Hashing, Encryption, File system operations, etc

– Common example: Use of hashing or encryption functions
• Old approach: “MD5 is banned, use SHA256!”
• New approach: “Hey, we saw you’re making use of a hashing

function, can we chat on what you’re trying to protect?”
• Silently allowing an approved hashing function to be used doesn’t

help anyone in cases where it’s not the appropriate use, ex: a case
where the data should be encrypted not hashed

Static Analysis (modern):

– Build proactive alerting to know when sensitive and rarely
changed portions of the codebase have been modified
• Can be as simple as alerting on when the hash changes on certain key

files
– Ex: authorization primitives, session management, encryption wrappers, etc

– By not blocking on these changes, you don’t impact velocity
but you ensure that the relevant security/development
engineers know if key platform protections are being
changed

Dynamic	Scanning	

Dynamic Scanning (legacy):

– Used to meet a baseline standard of discovering
vulnerabilities:
• Ex: “If a scanner can find it, we should probably fix it”

– Occasionally even (mis)used as a substitute for
pentesting

How do we adapt this control?

Dynamic Scanning (modern):

– Applications architectures and functionality have
changed significantly since scanners were
pioneered in the early-mid 2000s
• Modern applications are often far too complex to be

effectively covered by scanners
– Client side functionality, single page applications, etc.

– In the old use cases there’s too little bang for the
buck from scanners when used with modern apps

– However, scanners can be adapted to two cheap
and effective use cases:

Dynamic Scanning (modern):

1. Ensuring that security policies are being enforced
• Ex: TLS only supporting strong ciphers
• Ex: Crawl the app and ensure that CSP exists, or that X-

Frame-Options header is always set to DENY

2. An extra control on ensuring previous
vulnerabilities aren’t accidentally regressed back in
to the application:
• Ex: We had an XSS in this parameter before, always

check it with this specific payload to ensure the
protection didn’t get accidentally rolled back

Security	Visibility

Security Visibility (legacy):

– Logs, customer service reports, outages

– Each source of information was generally isolated
in who had access to the data
• Ex: Ops had logs, customer support dealt with emails

from customers, outages would page only certain dev or
ops on-call / leads, etc

How do we adapt this control?

Security Visibility (modern):

– GOAL: Break down the previous silos of data
isolation and empower security, development, and
DevOps teams to all know security relevant
information from their application in real time

– This isn’t a new idea! Take principles of general
operational visibility, and apply to a security
perspective
• Superset of operational data + security relevant data

This	graph	provokes	wildly	different	assumptions	from	
Development,	DevOps,	and	Security	teams

Context	is	key,	for	*all*	groups

+

Feedback

Feedback (legacy):

• Typically done as annual pentests

• Unfortunately this really only answers the
question “do I have bugs?”
– Spoiler alert: The answer is yes. Always.

• When applications were released annually or bi-
annually that could be “real time enough” feedback

How do we adapt this control?

Feedback (modern):

• Combination of bug bounty + pentests

• Bounty is not a replacement for pentest, it
augments pentest
– Value is in the continuous nature of it, whereas

pentests can be more directed

• Bounty gives general but more real time
feedback, pentest shifts to giving more directed
but less frequent feedback

Break	out	the	Thought	Leader-hosen!	

It’s	time	for	some	thoughts	on	where	modern	application	
defense	should	be	headed	towards

The hallmark of modern application defense is
the combination of continuous feedback +

visibility

To be successful against real attackers, you need
to be able to answer the question:

“How do I know when my attackers are being
successful?”

Three pillars of effective visibility + continuous
feedback

1. Ability to detect attackers as early as possible in
the attack chain
– You want to know when the attacker discovers the

vulnerability, long before the database goes out the
door

2. Ability to continuously test and refine your
vulnerability triage/response
– The beauty of DevOps is that you can actually move

faster than your attackers for the first time, especially
the more you empower development / DevOps teams

Three pillars of effective visibility + continuous
feedback

3. Ability to continuously test and refine your
incident response/DFIR/SecOps process
– By treating even benign bug reports as sample

incidents, you can continuously exercise and adapt
your process

– Ultimately you want to be able to answer several
questions for any given bug report that comes in:
– Did this bounty participant find any additional issues they’re

not reporting?
– Was this reported vulnerability exploited previously?
– etc

Continuous feedback loop success story:

“I discovered the vulnerability late Friday afternoon and
wasn't quite ready to email it to them … [Etsy] had

detected my requests and pushed a patch Saturday
morning before I could email them. This was by far

the fastest response time by any company I've reported
to.”

- Source:
https://www.reddit.com/r/netsec/comments/vbrzg/etsy_has_been_one_of_the_

best_companies_ive

Conclusions

• The thesis of modern application security is
about shifting:
– From: A mindset of “Exclusively focus on

gatekeeping controls to eliminate bugs before code
is deployed”
• (An impossible goal, bugs will never be fully

eliminated)
– To: Focus on obtaining and refining continuous

visibility and feedback from deployed applications,
and providing security capabilities that make
developers/DevOps teams security self-sufficient

Thanks!

zane@signalsciences.com @zanelackey

